https://doi.org/10.3390/biom9090435 ·
Повний текст
Видання: Biomolecules, 2019, №9, с.435
Видавець: MDPI AG
Автори:
- Bihui Liu
- Jing Zhang
- Peng Sun
- Ruokun Yi
- Xiaoyan Han
- Xin Zhao
Анотація
A high-fat diet-induced C57BL/6N mouse model of non-alcoholic fatty liver disease (NAFLD) was established. The effect and mechanism of Raw Bowl Tea polyphenols (RBTP) on preventing NAFLD via regulating intestinal function were observed. The serum, liver, epididymis, small intestine tissues, and feces of mice were examined by biochemical and molecular biological methods, and the composition of RBTP was analyzed by HPLC assay. The results showed that RBTP could effectively reduce the body weight, liver weight, and liver index of NAFLD mice. The serum effects of RBTP were: (1) decreases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), D-lactate (D-LA), diamine oxidase (DAO), lipopolysaccharide (LPS), and an increase of high density lipoprotein cholesterol (HDL-C) levels; (2) a decrease of inflammatory cytokines such as interleukin 1 beta (IL-1β), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-α), and interferon gamma (INF-γ); (3) a decrease the reactive oxygen species (ROS) level in liver tissue; and (4) alleviation of pathological injuries of liver, epididymis, and small intestinal tissues caused by NAFLD and protection of body tissues. qPCR and Western blot results showed that RBTP could up-regulate the mRNA and protein expressions of LPL, PPAR-α, CYP7A1, and CPT1, and down-regulate PPAR-γ and C/EBP-α in the liver of NAFLD mice. In addition, RBTP up-regulated the expression of occludin and ZO-1, and down-regulated the expression of CD36 and TNF-α in the small intestines of NAFLD mice. Studies on mice feces showed that RBTP reduced the level of Firmicutes and increased the minimum levels of Bacteroides and Akkermansia, as well as reduced the proportion of Firmicutes/Bacteroides in the feces of NAFLD mice, which play a role in regulating intestinal microecology. Component analysis showed that RBTP contained seven polyphenolic compounds: Gallic acid, (-)-epigallocatechin, catechin, L-epicatechin, (-)-epigallocatechin gallate, (-)-gallocatechin gallate, and (-)-epicatechin gallate (ECG), and high levels of caffeine, (-)-epigallocatechin (EGC), and ECG. RBTP improved the intestinal environment of NAFLD mice with the contained active ingredients, thus playing a role in preventing NAFLD. The effect was positively correlated with the dose of 100 mg/kg, which was even better than that of the clinical drug bezafibrate.
Список літератури
- Italian Association for the Study of the Liver (2017). AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig. Liver Dis., 49, 471–483.
https://doi.org/10.1016/j.dld.2017.01.147
- Stefan, Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease, N. Engl. J. Med., № 371, с. 2236
https://doi.org/10.1056/NEJMc1412427
- Donnelly, Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease, J. Clin. Investig., № 115, с. 1343
https://doi.org/10.1172/JCI23621
- Xu, Predicting the age and type of tuocha tea by fourier transform infrared spectroscopy and chemometric data analysis, J. Agric. Food Chem., № 59, с. 10461
https://doi.org/10.1021/jf2026499
- Song, Study on activity of Dark Tea extracts on PPARs model, J. Tea Sci., № 28, с. 319
- Zhao, The functional constituents of Xiaguan Xiaotuocha and its hypolipidemic effect, Hubei Agric. Sci., № 52, с. 1334
- Liu, Observation on the therapeutic effect of Yunnan Tuocha on hyperlipidemia (comparing with antamine), Acta Acad. Med. Kunming, № Z1, с. 51
- Xu, Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds, J. Hepatol., № 62, с. 1412
https://doi.org/10.1016/j.jhep.2015.01.019
- Nobili, A 360-degree overview of paediatric NAFLD: Recent insights, J. Hepatol., № 58, с. 1218
https://doi.org/10.1016/j.jhep.2012.12.003
- Zhu, Effect of Pu-erh tea on long chain fatty acid metabolism and expression of tight junction proteins in the rat model of non-alcoholic fatty liver disease, J. Tea Sci., № 36, с. 237
- Rychlicki, Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice, Hepatology, № 59, с. 1738
https://doi.org/10.1002/hep.26695
- Gaborit, Gut microbiota and non-alcoholic fatty liver disease: New insights, Clin. Microbiol. Infect., № 19, с. 338
https://doi.org/10.1111/1469-0691.12140
- Tan, Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats, World J. Gastroenterol., № 23, с. 3805
https://doi.org/10.3748/wjg.v23.i21.3805
- Hui, Identification of catechin in Tuo Tea, J. Chin. Mass Spectrom. Soc., № 25, с. 42
- Qian, Y., Zhang, J., Fu, X., Yi, R., Sun, P., Zou, M., Long, X., and Zhao, X. (2018). Preventive effect of raw Liubao Tea polyphenols on mouse gastric injuries induced by HCl/ethanol via anti-oxidative stress. Molecules, 23.
https://doi.org/10.3390/molecules23112848
- Cho, Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice, J. Exerc. Nutr. Biochem., № 18, с. 339
https://doi.org/10.5717/jenb.2014.18.4.339
- Qian, Y., Zhang, J., Zhou, X., Yi, R., Mu, J., Long, X., Pan, Y., Zhao, X., and Liu, W. (2018). Lactobacillus plantarum CQPC11 isolated from sichuan pickled cabbages antagonizes d-galactose-induced oxidation and aging in mice. Molecules, 23.
https://doi.org/10.3390/molecules23113026
- Pan, Y., Long, X., Yi, R., and Zhao, X. (2018). Polyphenols in Liubao tea can prevent CCl4-induced hepatic damage in mice through its antioxidant capacities. Nutrients, 10.
https://doi.org/10.3390/nu10091280
- Fazel, Epidemiology and natural history of non-alcoholic fattyliver disease, Metabolism, № 65, с. 1017
https://doi.org/10.1016/j.metabol.2016.01.012
- Day, Steatohepatitis: A tale of two “hits”?, Gastroenterology, № 114, с. 842
https://doi.org/10.1016/S0016-5085(98)70599-2
- Carmody, Diet dominates host genotype in shaping the murine gut microbiota, Cell Host Microbe, № 17, с. 72
https://doi.org/10.1016/j.chom.2014.11.010
- Liu, Effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease development, World J. Gastroenterol., № 22, с. 7353
https://doi.org/10.3748/wjg.v22.i32.7353
- Lee, Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver disease by restoring autophagic clearance, Biomaterials, № 197, с. 1
https://doi.org/10.1016/j.biomaterials.2019.01.008
- Al Zarzour, R.H., Ahmad, M., Asmawi, M.Z., Kaur, G., Saeed, M.A.A., Al-Mansoub, M.A., Saghir, S.A.M., Usman, N.S., Al-Dulaimi, D.W., and Yam, M.F. (2017). Phyllanthus Niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in Sprague-Dawley Rats. Nutrients, 9.
https://doi.org/10.3390/nu9070766
- Panelli, M.F., Pierine, D.T., De Souza, S.L.B., Ferron, A.J.T., Garcia, J.L., Santos, K.C., Belin, M.A.F., Lima, G.P.P., Borguini, M.G., and Minatel, I.O. (2018). Bark of Passiflora edulis treatment stimulates antioxidant capacity, and reduces dyslipidemia and body fat in db/db mice. Antioxidants, 7.
https://doi.org/10.3390/antiox7090120
- Xu, Fisetin attenuates high fat diet-triggered hepatic lipid accumulation: A mechanism involving liver inflammation overload associated TACE/TNF-α pathway, J. Funct. Foods, № 53, с. 7
https://doi.org/10.1016/j.jff.2018.12.007
- Yu, STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis, J. Clin. Investig., № 129, с. 546
https://doi.org/10.1172/JCI121842
- Barroso, Mate tea reduces high fat diet-induced liver and metabolic disorders in mice, Biomed. Pharmacother., № 109, с. 1547
https://doi.org/10.1016/j.biopha.2018.11.007
- Souza, Short-term treatment with metformin reduces hepatic lipid accumulation but induces liver inflammation in obese mice, Inflammopharmacology, № 26, с. 1103
https://doi.org/10.1007/s10787-018-0443-7
- Yao, Plasma D (-)-lactate as a new marker for diagnosis of acute intestinal injury following ischemia-reperfusion, World J. Gastroenterol., № 3, с. 225
https://doi.org/10.3748/wjg.v3.i4.225
- Sun, The influence of apoptosis on intestinal barrier integrity in rats, Scand. J. Gastroenterol., № 33, с. 415
https://doi.org/10.1080/00365529850171053
- Feng, Impaired function of the intestinal barrier in a novel sub-health rat model, Mol. Med. Rep., № 13, с. 3459
https://doi.org/10.3892/mmr.2016.4978
- Brun, Increased intestinal permeability in obese mice: New evidence in the pathogenesis of nonalcoholic steatohepatitis, Am. J. Physiol. Gastrointest. Liver Physiol., № 292, с. 518
https://doi.org/10.1152/ajpgi.00024.2006
- Yang, TNFα-mediated necroptosis aggravates ischemia-reperfusion injury in the fatty liver by regulating the inflammatory response, Oxid. Med. Cell Longev., № 2019, с. 2301903
https://doi.org/10.1155/2019/2301903
- Khajebishak, Punicic acid: A potential compound of pomegranate seed oil in Type 2 diabetes mellitus management, J. Cell. Physiol., № 234, с. 2112
https://doi.org/10.1002/jcp.27556
- Kang, The anti-adipogenic activity of a new cultivar, Pleurotus eryngii var. ferulae ‘Beesan No. 2’, through down-regulation of PPAR γ and C/EBP α in 3T3-L1 cells, J. Microbiol. Biotechnol., № 26, с. 1836
https://doi.org/10.4014/jmb.1606.06049
- Kim, Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells, Nutr. Res. Pract., № 12, с. 494
https://doi.org/10.4162/nrp.2018.12.6.494
- Lundsgaard, Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise, Trends Endocrinol. Metab., № 29, с. 18
https://doi.org/10.1016/j.tem.2017.10.011
- Freitag, Genetic variation of fatty acid oxidation and obesity, a literature review, Int. J. Biomed. Sci., № 12, с. 1
https://doi.org/10.59566/IJBS.2016.12001
- Lee, Hypolipidemic Effect of hexane fraction from Rhizopus oryzae KSD-815, J. Kor. Soc. Appl. Biol. Chem., № 53, с. 761
https://doi.org/10.3839/jksabc.2010.115
- Colom, Associations between epicardial adipose tissue, subclinical atherosclerosis and high-density lipoprotein composition in type 1 diabetes, Cardiovasc. Diabetol., № 17, с. 156
https://doi.org/10.1186/s12933-018-0794-9
- Su, New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients, Lipids Health Dis., № 17, с. 174
https://doi.org/10.1186/s12944-018-0833-2
- Magnan, Brain lipoprotein lipase as a regulator of energy balance, Biochimie, № 143, с. 51
https://doi.org/10.1016/j.biochi.2017.07.012
- Yang, D., Hu, C., Deng, X., Bai, Y., Cao, H., Guo, J., and Su, Z. (2019). Therapeutic effect of chitooligosaccharide tablets on lipids in high-fat diets induced hyperlipidemic rats. Molecules, 24.
https://doi.org/10.3390/molecules24030514
- Tanaka, Gender-divergent expression of lipid and bile acid metabolism-related genes in adult mice offspring of dams fed a high-fat diet, J. Biosci., № 43, с. 329
https://doi.org/10.1007/s12038-018-9750-9
- Miele, Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease, Hepatology, № 49, с. 1877
https://doi.org/10.1002/hep.22848
- Wigg, The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis, Gut, № 48, с. 206
https://doi.org/10.1136/gut.48.2.206
- Endo, H., Niioka, M., Kobayashi, N., Tanaka, M., and Watanabe, T. (2013). Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis. PLoS ONE, 8.
https://doi.org/10.1371/journal.pone.0063388
- Ogawa, Pathophysiology of NAsh/NAFLD associated with high levels of serum triglycerides, Nihon. Rinsho., № 71, с. 1623
- Han, Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice, Shock, № 21, с. 261
https://doi.org/10.1097/01.shk.0000112346.38599.10
- Reid, Nonalcoholic steatohepatitis, Gastroenterology, № 121, с. 710
https://doi.org/10.1053/gast.2001.27126
- Minemura, Gut microbiota and liver diseases, World J. Gastroenterol., № 21, с. 1691
https://doi.org/10.3748/wjg.v21.i6.1691
- Hooper, Molecular analysis of commensal host-microbial relationships in the intestine, Science, № 291, с. 881
https://doi.org/10.1126/science.291.5505.881
- Lu, Pu-er tea extract modulating lipid metabolism and gut microbiota in nonalcoholic fatty liver disease mice, Chin. J. Vet. Sci., № 38, с. 751
- Bruno, Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury, J. Nutr., № 138, с. 323
https://doi.org/10.1093/jn/138.2.323
- Kuriyama, Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: The Ohsaki study, JAMA, № 296, с. 1255
https://doi.org/10.1001/jama.296.10.1255
- Zhang, Lipid-lowering effects of gallic acid on glutamate-induced obese mice, Chin. Tradit. Patent Med., № 39, с. 1115
- Han, Protective effect of (-)-epigallocatechin gallate on cardiovascular health, Chin. J. Pathophysiol., № 28, с. 1521
- Xie, Contents determination of catechins active components in lipid-lowering slimming health products by quantitative analysis of multi-components via single marker, China Pharm., № 28, с. 2529
- Harpaz, The effect of caffeine on energy balance, J. Basic Clin. Physiol. Pharmacol., № 28, с. 1
https://doi.org/10.1515/jbcpp-2016-0090
- Williamson, Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols, Biochem. Pharmacol., № 139, с. 24
https://doi.org/10.1016/j.bcp.2017.03.012
- Liu, The regulation effect of interaction between gut microbiota and tea and tea polyphenols in obesity and comorbidity, Nat. Prod. Res. Dev., № 30, с. 1640
- Ballestri, The role of nuclear receptors in the pathophysiology, natural course, and drug treatment of NAFLD in humans, Adv. Ther., № 33, с. 291
https://doi.org/10.1007/s12325-016-0306-9
Публікації, які цитують цю публікацію
Total Flavonoids from Chimonanthus nitens Oliv. Leaves Ameliorate HFD-Induced NAFLD by Regulating the Gut–Liver Axis in Mice
Wenya Meng, Zitong Zhao, Lingli Chen, Suyun Lin, Yang Zhang, Jing He, Kehui Ouyang, Wenjun Wang
https://doi.org/10.3390/foods11142169 ·
2022, Foods, №14, с.2169
Scopus
WoS
Цитувань Crossref:9
Citrus maxima and tea regulate AMPK signaling pathway to retard the progress of nonalcoholic fatty liver disease
Shuai Wen, Ran An, Zhi-Gang Li, Zhao-Xiang Lai, Dong-Li Li, Jun-Xi Cao, Ruo-Hong Chen, Wen-Ji Zhang, Qiu-Hua Li, Xing-Fei Lai, Shi-Li Sun, Ling-Li Sun
https://doi.org/10.29219/fnr.v66.7652 ·
2022, Food & Nutrition Research
Scopus
WoS
Цитувань Crossref:0
Polyphenols synergistic drugs to ameliorate non-alcoholic fatty liver disease via signal pathway and gut microbiota: A review
Hongcai Li, Jingjing Liang, Mengzhen Han, Zhenpeng Gao
https://doi.org/10.1016/j.jare.2024.03.004 ·
2024, Journal of Advanced Research
Scopus
WoS
Цитувань Crossref:0
Bacteroides and NAFLD: pathophysiology and therapy
Jun Zhang, Jing Zhou, Zheyun He, Hongshan Li
https://doi.org/10.3389/fmicb.2024.1288856 ·
2024, Frontiers in Microbiology
Scopus
WoS
Цитувань Crossref:0
Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease
Panli Tan, Li Jin, Xiang Qin, Beihui He
https://doi.org/10.3389/fphar.2022.1005312 ·
2022, Frontiers in Pharmacology
Scopus
WoS
Цитувань Crossref:0
Strain-Specific Benefits of Bacillus Probiotics in Hybrid Grouper: Growth Enhancement, Metabolic Health, Immune Modulation, and Vibrio harveyi Resistance
Congjie Han, Shizhen Song, Congcong Cui, Yan Cai, Yongcan Zhou, Jiawen Wang, Weilie Bei, Dongdong Zhang, Weiliang Guo, Shifeng Wang
https://doi.org/10.3390/ani14071062 ·
2024, Animals, №7, с.1062
Scopus
WoS
Цитувань Crossref:0
Biological Mechanisms and Related Natural Inhibitors of CD36 in Nonalcoholic Fatty Liver
Yanan Feng, Wenxiu Sun, Fengcui Sun, Guoliang Yin, Pengpeng Liang, Suwen Chen, Xiangyi Liu, Tongfei Jiang, Fengxia Zhang
https://doi.org/10.2147/dddt.s386982 ·
2022, Drug Design, Development and Therapy, с.3829-3845
Scopus
WoS
Цитувань Crossref:0
Extraction of raspberry ketone from red raspberry and its intervention in the non-alcoholic fatty liver disease
Yongqiang Ma, Weiye Xiu, Xin Wang, Qiuhui Yang
https://doi.org/10.1186/s13765-022-00745-3 ·
2022, Applied Biological Chemistry, №1
Scopus
WoS
Цитувань Crossref:0
Impacts of Plant-derived Secondary Metabolites for Improving Flora in Type 2 Diabetes
Lin Zehao Li, Yan Yan, Qinghe Song, Zhibin Wang, Wei Zhang, Yanli Hou, Xiandang Zhang
https://doi.org/10.2174/1573399819666230116111856
2023, Current Diabetes Reviews, №7
Scopus
WoS
Цитувань Crossref:0
Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?
Judith Aron-Wisnewsky, Moritz V. Warmbrunn, Max Nieuwdorp, Karine Clément
https://doi.org/10.1053/j.gastro.2020.01.049 ·
2020, Gastroenterology, №7, с.1881-1898
Scopus
WoS
Цитувань Crossref:140
Знайти всі цитування публікації